// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package xml import ( "bufio" "bytes" "encoding" "fmt" "io" "reflect" "strconv" "strings" ) const ( // A generic XML header suitable for use with the output of Marshal. // This is not automatically added to any output of this package, // it is provided as a convenience. Header = `<?xml version="1.0" encoding="UTF-8"?>` + "\n" ) // Marshal returns the XML encoding of v. // // Marshal handles an array or slice by marshalling each of the elements. // Marshal handles a pointer by marshalling the value it points at or, if the // pointer is nil, by writing nothing. Marshal handles an interface value by // marshalling the value it contains or, if the interface value is nil, by // writing nothing. Marshal handles all other data by writing one or more XML // elements containing the data. // // The name for the XML elements is taken from, in order of preference: // - the tag on the XMLName field, if the data is a struct // - the value of the XMLName field of type xml.Name // - the tag of the struct field used to obtain the data // - the name of the struct field used to obtain the data // - the name of the marshalled type // // The XML element for a struct contains marshalled elements for each of the // exported fields of the struct, with these exceptions: // - the XMLName field, described above, is omitted. // - a field with tag "-" is omitted. // - a field with tag "name,attr" becomes an attribute with // the given name in the XML element. // - a field with tag ",attr" becomes an attribute with the // field name in the XML element. // - a field with tag ",chardata" is written as character data, // not as an XML element. // - a field with tag ",innerxml" is written verbatim, not subject // to the usual marshalling procedure. // - a field with tag ",comment" is written as an XML comment, not // subject to the usual marshalling procedure. It must not contain // the "--" string within it. // - a field with a tag including the "omitempty" option is omitted // if the field value is empty. The empty values are false, 0, any // nil pointer or interface value, and any array, slice, map, or // string of length zero. // - an anonymous struct field is handled as if the fields of its // value were part of the outer struct. // // If a field uses a tag "a>b>c", then the element c will be nested inside // parent elements a and b. Fields that appear next to each other that name // the same parent will be enclosed in one XML element. // // See MarshalIndent for an example. // // Marshal will return an error if asked to marshal a channel, function, or map. func Marshal(v interface{}) ([]byte, error) { var b bytes.Buffer if err := NewEncoder(&b).Encode(v); err != nil { return nil, err } return b.Bytes(), nil } // Marshaler is the interface implemented by objects that can marshal // themselves into valid XML elements. // // MarshalXML encodes the receiver as zero or more XML elements. // By convention, arrays or slices are typically encoded as a sequence // of elements, one per entry. // Using start as the element tag is not required, but doing so // will enable Unmarshal to match the XML elements to the correct // struct field. // One common implementation strategy is to construct a separate // value with a layout corresponding to the desired XML and then // to encode it using e.EncodeElement. // Another common strategy is to use repeated calls to e.EncodeToken // to generate the XML output one token at a time. // The sequence of encoded tokens must make up zero or more valid // XML elements. type Marshaler interface { MarshalXML(e *Encoder, start StartElement) error } // MarshalerAttr is the interface implemented by objects that can marshal // themselves into valid XML attributes. // // MarshalXMLAttr returns an XML attribute with the encoded value of the receiver. // Using name as the attribute name is not required, but doing so // will enable Unmarshal to match the attribute to the correct // struct field. // If MarshalXMLAttr returns the zero attribute Attr{}, no attribute // will be generated in the output. // MarshalXMLAttr is used only for struct fields with the // "attr" option in the field tag. type MarshalerAttr interface { MarshalXMLAttr(name Name) (Attr, error) } // MarshalIndent works like Marshal, but each XML element begins on a new // indented line that starts with prefix and is followed by one or more // copies of indent according to the nesting depth. func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) { var b bytes.Buffer enc := NewEncoder(&b) enc.Indent(prefix, indent) if err := enc.Encode(v); err != nil { return nil, err } return b.Bytes(), nil } // An Encoder writes XML data to an output stream. type Encoder struct { p printer } // NewEncoder returns a new encoder that writes to w. func NewEncoder(w io.Writer) *Encoder { e := &Encoder{printer{Writer: bufio.NewWriter(w)}} e.p.encoder = e return e } // Indent sets the encoder to generate XML in which each element // begins on a new indented line that starts with prefix and is followed by // one or more copies of indent according to the nesting depth. func (enc *Encoder) Indent(prefix, indent string) { enc.p.prefix = prefix enc.p.indent = indent } // Encode writes the XML encoding of v to the stream. // // See the documentation for Marshal for details about the conversion // of Go values to XML. // // Encode calls Flush before returning. func (enc *Encoder) Encode(v interface{}) error { err := enc.p.marshalValue(reflect.ValueOf(v), nil, nil) if err != nil { return err } return enc.p.Flush() } // EncodeElement writes the XML encoding of v to the stream, // using start as the outermost tag in the encoding. // // See the documentation for Marshal for details about the conversion // of Go values to XML. // // EncodeElement calls Flush before returning. func (enc *Encoder) EncodeElement(v interface{}, start StartElement) error { err := enc.p.marshalValue(reflect.ValueOf(v), nil, &start) if err != nil { return err } return enc.p.Flush() } var ( begComment = []byte("<!--") endComment = []byte("-->") endProcInst = []byte("?>") endDirective = []byte(">") ) // EncodeToken writes the given XML token to the stream. // It returns an error if StartElement and EndElement tokens are not // properly matched. // // EncodeToken does not call Flush, because usually it is part of a // larger operation such as Encode or EncodeElement (or a custom // Marshaler's MarshalXML invoked during those), and those will call // Flush when finished. Callers that create an Encoder and then invoke // EncodeToken directly, without using Encode or EncodeElement, need to // call Flush when finished to ensure that the XML is written to the // underlying writer. // // EncodeToken allows writing a ProcInst with Target set to "xml" only // as the first token in the stream. // // When encoding a StartElement holding an XML namespace prefix // declaration for a prefix that is not already declared, contained // elements (including the StartElement itself) will use the declared // prefix when encoding names with matching namespace URIs. func (enc *Encoder) EncodeToken(t Token) error { p := &enc.p switch t := t.(type) { case StartElement: if err := p.writeStart(&t); err != nil { return err } case EndElement: if err := p.writeEnd(t.Name); err != nil { return err } case CharData: escapeText(p, t, false) case Comment: if bytes.Contains(t, endComment) { return fmt.Errorf("xml: EncodeToken of Comment containing --> marker") } p.WriteString("<!--") p.Write(t) p.WriteString("-->") return p.cachedWriteError() case ProcInst: // First token to be encoded which is also a ProcInst with target of xml // is the xml declaration. The only ProcInst where target of xml is allowed. if t.Target == "xml" && p.Buffered() != 0 { return fmt.Errorf("xml: EncodeToken of ProcInst xml target only valid for xml declaration, first token encoded") } if !isNameString(t.Target) { return fmt.Errorf("xml: EncodeToken of ProcInst with invalid Target") } if bytes.Contains(t.Inst, endProcInst) { return fmt.Errorf("xml: EncodeToken of ProcInst containing ?> marker") } p.WriteString("<?") p.WriteString(t.Target) if len(t.Inst) > 0 { p.WriteByte(' ') p.Write(t.Inst) } p.WriteString("?>") case Directive: if !isValidDirective(t) { return fmt.Errorf("xml: EncodeToken of Directive containing wrong < or > markers") } p.WriteString("<!") p.Write(t) p.WriteString(">") default: return fmt.Errorf("xml: EncodeToken of invalid token type") } return p.cachedWriteError() } // isValidDirective reports whether dir is a valid directive text, // meaning angle brackets are matched, ignoring comments and strings. func isValidDirective(dir Directive) bool { var ( depth int inquote uint8 incomment bool ) for i, c := range dir { switch { case incomment: if c == '>' { if n := 1 + i - len(endComment); n >= 0 && bytes.Equal(dir[n:i+1], endComment) { incomment = false } } // Just ignore anything in comment case inquote != 0: if c == inquote { inquote = 0 } // Just ignore anything within quotes case c == '\'' || c == '"': inquote = c case c == '<': if i+len(begComment) < len(dir) && bytes.Equal(dir[i:i+len(begComment)], begComment) { incomment = true } else { depth++ } case c == '>': if depth == 0 { return false } depth-- } } return depth == 0 && inquote == 0 && !incomment } // Flush flushes any buffered XML to the underlying writer. // See the EncodeToken documentation for details about when it is necessary. func (enc *Encoder) Flush() error { return enc.p.Flush() } type printer struct { *bufio.Writer encoder *Encoder seq int indent string prefix string depth int indentedIn bool putNewline bool defaultNS string attrNS map[string]string // map prefix -> name space attrPrefix map[string]string // map name space -> prefix prefixes []printerPrefix tags []Name } // printerPrefix holds a namespace undo record. // When an element is popped, the prefix record // is set back to the recorded URL. The empty // prefix records the URL for the default name space. // // The start of an element is recorded with an element // that has mark=true. type printerPrefix struct { prefix string url string mark bool } func (p *printer) prefixForNS(url string, isAttr bool) string { // The "http://www.w3.org/XML/1998/namespace" name space is predefined as "xml" // and must be referred to that way. // (The "http://www.w3.org/2000/xmlns/" name space is also predefined as "xmlns", // but users should not be trying to use that one directly - that's our job.) if url == xmlURL { return "xml" } if !isAttr && url == p.defaultNS { // We can use the default name space. return "" } return p.attrPrefix[url] } // defineNS pushes any namespace definition found in the given attribute. // If ignoreNonEmptyDefault is true, an xmlns="nonempty" // attribute will be ignored. func (p *printer) defineNS(attr Attr, ignoreNonEmptyDefault bool) error { var prefix string if attr.Name.Local == "xmlns" { if attr.Name.Space != "" && attr.Name.Space != "xml" && attr.Name.Space != xmlURL { return fmt.Errorf("xml: cannot redefine xmlns attribute prefix") } } else if attr.Name.Space == "xmlns" && attr.Name.Local != "" { prefix = attr.Name.Local if attr.Value == "" { // Technically, an empty XML namespace is allowed for an attribute. // From http://www.w3.org/TR/xml-names11/#scoping-defaulting: // // The attribute value in a namespace declaration for a prefix may be // empty. This has the effect, within the scope of the declaration, of removing // any association of the prefix with a namespace name. // // However our namespace prefixes here are used only as hints. There's // no need to respect the removal of a namespace prefix, so we ignore it. return nil } } else { // Ignore: it's not a namespace definition return nil } if prefix == "" { if attr.Value == p.defaultNS { // No need for redefinition. return nil } if attr.Value != "" && ignoreNonEmptyDefault { // We have an xmlns="..." value but // it can't define a name space in this context, // probably because the element has an empty // name space. In this case, we just ignore // the name space declaration. return nil } } else if _, ok := p.attrPrefix[attr.Value]; ok { // There's already a prefix for the given name space, // so use that. This prevents us from // having two prefixes for the same name space // so attrNS and attrPrefix can remain bijective. return nil } p.pushPrefix(prefix, attr.Value) return nil } // createNSPrefix creates a name space prefix attribute // to use for the given name space, defining a new prefix // if necessary. // If isAttr is true, the prefix is to be created for an attribute // prefix, which means that the default name space cannot // be used. func (p *printer) createNSPrefix(url string, isAttr bool) { if _, ok := p.attrPrefix[url]; ok { // We already have a prefix for the given URL. return } switch { case !isAttr && url == p.defaultNS: // We can use the default name space. return case url == "": // The only way we can encode names in the empty // name space is by using the default name space, // so we must use that. if p.defaultNS != "" { // The default namespace is non-empty, so we // need to set it to empty. p.pushPrefix("", "") } return case url == xmlURL: return } // TODO If the URL is an existing prefix, we could // use it as is. That would enable the // marshaling of elements that had been unmarshaled // and with a name space prefix that was not found. // although technically it would be incorrect. // Pick a name. We try to use the final element of the path // but fall back to _. prefix := strings.TrimRight(url, "/") if i := strings.LastIndex(prefix, "/"); i >= 0 { prefix = prefix[i+1:] } if prefix == "" || !isName([]byte(prefix)) || strings.Contains(prefix, ":") { prefix = "_" } if strings.HasPrefix(prefix, "xml") { // xmlanything is reserved. prefix = "_" + prefix } if p.attrNS[prefix] != "" { // Name is taken. Find a better one. for p.seq++; ; p.seq++ { if id := prefix + "_" + strconv.Itoa(p.seq); p.attrNS[id] == "" { prefix = id break } } } p.pushPrefix(prefix, url) } // writeNamespaces writes xmlns attributes for all the // namespace prefixes that have been defined in // the current element. func (p *printer) writeNamespaces() { for i := len(p.prefixes) - 1; i >= 0; i-- { prefix := p.prefixes[i] if prefix.mark { return } p.WriteString(" ") if prefix.prefix == "" { // Default name space. p.WriteString(`xmlns="`) } else { p.WriteString("xmlns:") p.WriteString(prefix.prefix) p.WriteString(`="`) } EscapeText(p, []byte(p.nsForPrefix(prefix.prefix))) p.WriteString(`"`) } } // pushPrefix pushes a new prefix on the prefix stack // without checking to see if it is already defined. func (p *printer) pushPrefix(prefix, url string) { p.prefixes = append(p.prefixes, printerPrefix{ prefix: prefix, url: p.nsForPrefix(prefix), }) p.setAttrPrefix(prefix, url) } // nsForPrefix returns the name space for the given // prefix. Note that this is not valid for the // empty attribute prefix, which always has an empty // name space. func (p *printer) nsForPrefix(prefix string) string { if prefix == "" { return p.defaultNS } return p.attrNS[prefix] } // markPrefix marks the start of an element on the prefix // stack. func (p *printer) markPrefix() { p.prefixes = append(p.prefixes, printerPrefix{ mark: true, }) } // popPrefix pops all defined prefixes for the current // element. func (p *printer) popPrefix() { for len(p.prefixes) > 0 { prefix := p.prefixes[len(p.prefixes)-1] p.prefixes = p.prefixes[:len(p.prefixes)-1] if prefix.mark { break } p.setAttrPrefix(prefix.prefix, prefix.url) } } // setAttrPrefix sets an attribute name space prefix. // If url is empty, the attribute is removed. // If prefix is empty, the default name space is set. func (p *printer) setAttrPrefix(prefix, url string) { if prefix == "" { p.defaultNS = url return } if url == "" { delete(p.attrPrefix, p.attrNS[prefix]) delete(p.attrNS, prefix) return } if p.attrPrefix == nil { // Need to define a new name space. p.attrPrefix = make(map[string]string) p.attrNS = make(map[string]string) } // Remove any old prefix value. This is OK because we maintain a // strict one-to-one mapping between prefix and URL (see // defineNS) delete(p.attrPrefix, p.attrNS[prefix]) p.attrPrefix[url] = prefix p.attrNS[prefix] = url } var ( marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem() marshalerAttrType = reflect.TypeOf((*MarshalerAttr)(nil)).Elem() textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem() ) // marshalValue writes one or more XML elements representing val. // If val was obtained from a struct field, finfo must have its details. func (p *printer) marshalValue(val reflect.Value, finfo *fieldInfo, startTemplate *StartElement) error { if startTemplate != nil && startTemplate.Name.Local == "" { return fmt.Errorf("xml: EncodeElement of StartElement with missing name") } if !val.IsValid() { return nil } if finfo != nil && finfo.flags&fOmitEmpty != 0 && isEmptyValue(val) { return nil } // Drill into interfaces and pointers. // This can turn into an infinite loop given a cyclic chain, // but it matches the Go 1 behavior. for val.Kind() == reflect.Interface || val.Kind() == reflect.Ptr { if val.IsNil() { return nil } val = val.Elem() } kind := val.Kind() typ := val.Type() // Check for marshaler. if val.CanInterface() && typ.Implements(marshalerType) { return p.marshalInterface(val.Interface().(Marshaler), p.defaultStart(typ, finfo, startTemplate)) } if val.CanAddr() { pv := val.Addr() if pv.CanInterface() && pv.Type().Implements(marshalerType) { return p.marshalInterface(pv.Interface().(Marshaler), p.defaultStart(pv.Type(), finfo, startTemplate)) } } // Check for text marshaler. if val.CanInterface() && typ.Implements(textMarshalerType) { return p.marshalTextInterface(val.Interface().(encoding.TextMarshaler), p.defaultStart(typ, finfo, startTemplate)) } if val.CanAddr() { pv := val.Addr() if pv.CanInterface() && pv.Type().Implements(textMarshalerType) { return p.marshalTextInterface(pv.Interface().(encoding.TextMarshaler), p.defaultStart(pv.Type(), finfo, startTemplate)) } } // Slices and arrays iterate over the elements. They do not have an enclosing tag. if (kind == reflect.Slice || kind == reflect.Array) && typ.Elem().Kind() != reflect.Uint8 { for i, n := 0, val.Len(); i < n; i++ { if err := p.marshalValue(val.Index(i), finfo, startTemplate); err != nil { return err } } return nil } tinfo, err := getTypeInfo(typ) if err != nil { return err } // Create start element. // Precedence for the XML element name is: // 0. startTemplate // 1. XMLName field in underlying struct; // 2. field name/tag in the struct field; and // 3. type name var start StartElement // explicitNS records whether the element's name space has been // explicitly set (for example an XMLName field). explicitNS := false if startTemplate != nil { start.Name = startTemplate.Name explicitNS = true start.Attr = append(start.Attr, startTemplate.Attr...) } else if tinfo.xmlname != nil { xmlname := tinfo.xmlname if xmlname.name != "" { start.Name.Space, start.Name.Local = xmlname.xmlns, xmlname.name } else if v, ok := xmlname.value(val).Interface().(Name); ok && v.Local != "" { start.Name = v } explicitNS = true } if start.Name.Local == "" && finfo != nil { start.Name.Local = finfo.name if finfo.xmlns != "" { start.Name.Space = finfo.xmlns explicitNS = true } } if start.Name.Local == "" { name := typ.Name() if name == "" { return &UnsupportedTypeError{typ} } start.Name.Local = name } // defaultNS records the default name space as set by a xmlns="..." // attribute. We don't set p.defaultNS because we want to let // the attribute writing code (in p.defineNS) be solely responsible // for maintaining that. defaultNS := p.defaultNS // Attributes for i := range tinfo.fields { finfo := &tinfo.fields[i] if finfo.flags&fAttr == 0 { continue } attr, err := p.fieldAttr(finfo, val) if err != nil { return err } if attr.Name.Local == "" { continue } start.Attr = append(start.Attr, attr) if attr.Name.Space == "" && attr.Name.Local == "xmlns" { defaultNS = attr.Value } } if !explicitNS { // Historic behavior: elements use the default name space // they are contained in by default. start.Name.Space = defaultNS } // Historic behaviour: an element that's in a namespace sets // the default namespace for all elements contained within it. start.setDefaultNamespace() if err := p.writeStart(&start); err != nil { return err } if val.Kind() == reflect.Struct { err = p.marshalStruct(tinfo, val) } else { s, b, err1 := p.marshalSimple(typ, val) if err1 != nil { err = err1 } else if b != nil { EscapeText(p, b) } else { p.EscapeString(s) } } if err != nil { return err } if err := p.writeEnd(start.Name); err != nil { return err } return p.cachedWriteError() } // fieldAttr returns the attribute of the given field. // If the returned attribute has an empty Name.Local, // it should not be used. // The given value holds the value containing the field. func (p *printer) fieldAttr(finfo *fieldInfo, val reflect.Value) (Attr, error) { fv := finfo.value(val) name := Name{Space: finfo.xmlns, Local: finfo.name} if finfo.flags&fOmitEmpty != 0 && isEmptyValue(fv) { return Attr{}, nil } if fv.Kind() == reflect.Interface && fv.IsNil() { return Attr{}, nil } if fv.CanInterface() && fv.Type().Implements(marshalerAttrType) { attr, err := fv.Interface().(MarshalerAttr).MarshalXMLAttr(name) return attr, err } if fv.CanAddr() { pv := fv.Addr() if pv.CanInterface() && pv.Type().Implements(marshalerAttrType) { attr, err := pv.Interface().(MarshalerAttr).MarshalXMLAttr(name) return attr, err } } if fv.CanInterface() && fv.Type().Implements(textMarshalerType) { text, err := fv.Interface().(encoding.TextMarshaler).MarshalText() if err != nil { return Attr{}, err } return Attr{name, string(text)}, nil } if fv.CanAddr() { pv := fv.Addr() if pv.CanInterface() && pv.Type().Implements(textMarshalerType) { text, err := pv.Interface().(encoding.TextMarshaler).MarshalText() if err != nil { return Attr{}, err } return Attr{name, string(text)}, nil } } // Dereference or skip nil pointer, interface values. switch fv.Kind() { case reflect.Ptr, reflect.Interface: if fv.IsNil() { return Attr{}, nil } fv = fv.Elem() } s, b, err := p.marshalSimple(fv.Type(), fv) if err != nil { return Attr{}, err } if b != nil { s = string(b) } return Attr{name, s}, nil } // defaultStart returns the default start element to use, // given the reflect type, field info, and start template. func (p *printer) defaultStart(typ reflect.Type, finfo *fieldInfo, startTemplate *StartElement) StartElement { var start StartElement // Precedence for the XML element name is as above, // except that we do not look inside structs for the first field. if startTemplate != nil { start.Name = startTemplate.Name start.Attr = append(start.Attr, startTemplate.Attr...) } else if finfo != nil && finfo.name != "" { start.Name.Local = finfo.name start.Name.Space = finfo.xmlns } else if typ.Name() != "" { start.Name.Local = typ.Name() } else { // Must be a pointer to a named type, // since it has the Marshaler methods. start.Name.Local = typ.Elem().Name() } // Historic behaviour: elements use the name space of // the element they are contained in by default. if start.Name.Space == "" { start.Name.Space = p.defaultNS } start.setDefaultNamespace() return start } // marshalInterface marshals a Marshaler interface value. func (p *printer) marshalInterface(val Marshaler, start StartElement) error { // Push a marker onto the tag stack so that MarshalXML // cannot close the XML tags that it did not open. p.tags = append(p.tags, Name{}) n := len(p.tags) err := val.MarshalXML(p.encoder, start) if err != nil { return err } // Make sure MarshalXML closed all its tags. p.tags[n-1] is the mark. if len(p.tags) > n { return fmt.Errorf("xml: %s.MarshalXML wrote invalid XML: <%s> not closed", receiverType(val), p.tags[len(p.tags)-1].Local) } p.tags = p.tags[:n-1] return nil } // marshalTextInterface marshals a TextMarshaler interface value. func (p *printer) marshalTextInterface(val encoding.TextMarshaler, start StartElement) error { if err := p.writeStart(&start); err != nil { return err } text, err := val.MarshalText() if err != nil { return err } EscapeText(p, text) return p.writeEnd(start.Name) } // writeStart writes the given start element. func (p *printer) writeStart(start *StartElement) error { if start.Name.Local == "" { return fmt.Errorf("xml: start tag with no name") } p.tags = append(p.tags, start.Name) p.markPrefix() // Define any name spaces explicitly declared in the attributes. // We do this as a separate pass so that explicitly declared prefixes // will take precedence over implicitly declared prefixes // regardless of the order of the attributes. ignoreNonEmptyDefault := start.Name.Space == "" for _, attr := range start.Attr { if err := p.defineNS(attr, ignoreNonEmptyDefault); err != nil { return err } } // Define any new name spaces implied by the attributes. for _, attr := range start.Attr { name := attr.Name // From http://www.w3.org/TR/xml-names11/#defaulting // "Default namespace declarations do not apply directly // to attribute names; the interpretation of unprefixed // attributes is determined by the element on which they // appear." // This means we don't need to create a new namespace // when an attribute name space is empty. if name.Space != "" && !name.isNamespace() { p.createNSPrefix(name.Space, true) } } p.createNSPrefix(start.Name.Space, false) p.writeIndent(1) p.WriteByte('<') p.writeName(start.Name, false) p.writeNamespaces() for _, attr := range start.Attr { name := attr.Name if name.Local == "" || name.isNamespace() { // Namespaces have already been written by writeNamespaces above. continue } p.WriteByte(' ') p.writeName(name, true) p.WriteString(`="`) p.EscapeString(attr.Value) p.WriteByte('"') } p.WriteByte('>') return nil } // writeName writes the given name. It assumes // that p.createNSPrefix(name) has already been called. func (p *printer) writeName(name Name, isAttr bool) { if prefix := p.prefixForNS(name.Space, isAttr); prefix != "" { p.WriteString(prefix) p.WriteByte(':') } p.WriteString(name.Local) } func (p *printer) writeEnd(name Name) error { if name.Local == "" { return fmt.Errorf("xml: end tag with no name") } if len(p.tags) == 0 || p.tags[len(p.tags)-1].Local == "" { return fmt.Errorf("xml: end tag </%s> without start tag", name.Local) } if top := p.tags[len(p.tags)-1]; top != name { if top.Local != name.Local { return fmt.Errorf("xml: end tag </%s> does not match start tag <%s>", name.Local, top.Local) } return fmt.Errorf("xml: end tag </%s> in namespace %s does not match start tag <%s> in namespace %s", name.Local, name.Space, top.Local, top.Space) } p.tags = p.tags[:len(p.tags)-1] p.writeIndent(-1) p.WriteByte('<') p.WriteByte('/') p.writeName(name, false) p.WriteByte('>') p.popPrefix() return nil } func (p *printer) marshalSimple(typ reflect.Type, val reflect.Value) (string, []byte, error) { switch val.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return strconv.FormatInt(val.Int(), 10), nil, nil case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return strconv.FormatUint(val.Uint(), 10), nil, nil case reflect.Float32, reflect.Float64: return strconv.FormatFloat(val.Float(), 'g', -1, val.Type().Bits()), nil, nil case reflect.String: return val.String(), nil, nil case reflect.Bool: return strconv.FormatBool(val.Bool()), nil, nil case reflect.Array: if typ.Elem().Kind() != reflect.Uint8 { break } // [...]byte var bytes []byte if val.CanAddr() { bytes = val.Slice(0, val.Len()).Bytes() } else { bytes = make([]byte, val.Len()) reflect.Copy(reflect.ValueOf(bytes), val) } return "", bytes, nil case reflect.Slice: if typ.Elem().Kind() != reflect.Uint8 { break } // []byte return "", val.Bytes(), nil } return "", nil, &UnsupportedTypeError{typ} } var ddBytes = []byte("--") func (p *printer) marshalStruct(tinfo *typeInfo, val reflect.Value) error { s := parentStack{p: p} for i := range tinfo.fields { finfo := &tinfo.fields[i] if finfo.flags&fAttr != 0 { continue } vf := finfo.value(val) // Dereference or skip nil pointer, interface values. switch vf.Kind() { case reflect.Ptr, reflect.Interface: if !vf.IsNil() { vf = vf.Elem() } } switch finfo.flags & fMode { case fCharData: if err := s.setParents(&noField, reflect.Value{}); err != nil { return err } if vf.CanInterface() && vf.Type().Implements(textMarshalerType) { data, err := vf.Interface().(encoding.TextMarshaler).MarshalText() if err != nil { return err } Escape(p, data) continue } if vf.CanAddr() { pv := vf.Addr() if pv.CanInterface() && pv.Type().Implements(textMarshalerType) { data, err := pv.Interface().(encoding.TextMarshaler).MarshalText() if err != nil { return err } Escape(p, data) continue } } var scratch [64]byte switch vf.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: Escape(p, strconv.AppendInt(scratch[:0], vf.Int(), 10)) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: Escape(p, strconv.AppendUint(scratch[:0], vf.Uint(), 10)) case reflect.Float32, reflect.Float64: Escape(p, strconv.AppendFloat(scratch[:0], vf.Float(), 'g', -1, vf.Type().Bits())) case reflect.Bool: Escape(p, strconv.AppendBool(scratch[:0], vf.Bool())) case reflect.String: if err := EscapeText(p, []byte(vf.String())); err != nil { return err } case reflect.Slice: if elem, ok := vf.Interface().([]byte); ok { if err := EscapeText(p, elem); err != nil { return err } } } continue case fComment: if err := s.setParents(&noField, reflect.Value{}); err != nil { return err } k := vf.Kind() if !(k == reflect.String || k == reflect.Slice && vf.Type().Elem().Kind() == reflect.Uint8) { return fmt.Errorf("xml: bad type for comment field of %s", val.Type()) } if vf.Len() == 0 { continue } p.writeIndent(0) p.WriteString("<!--") dashDash := false dashLast := false switch k { case reflect.String: s := vf.String() dashDash = strings.Index(s, "--") >= 0 dashLast = s[len(s)-1] == '-' if !dashDash { p.WriteString(s) } case reflect.Slice: b := vf.Bytes() dashDash = bytes.Index(b, ddBytes) >= 0 dashLast = b[len(b)-1] == '-' if !dashDash { p.Write(b) } default: panic("can't happen") } if dashDash { return fmt.Errorf(`xml: comments must not contain "--"`) } if dashLast { // "--->" is invalid grammar. Make it "- -->" p.WriteByte(' ') } p.WriteString("-->") continue case fInnerXml: iface := vf.Interface() switch raw := iface.(type) { case []byte: p.Write(raw) continue case string: p.WriteString(raw) continue } case fElement, fElement | fAny: if err := s.setParents(finfo, vf); err != nil { return err } } if err := p.marshalValue(vf, finfo, nil); err != nil { return err } } if err := s.setParents(&noField, reflect.Value{}); err != nil { return err } return p.cachedWriteError() } var noField fieldInfo // return the bufio Writer's cached write error func (p *printer) cachedWriteError() error { _, err := p.Write(nil) return err } func (p *printer) writeIndent(depthDelta int) { if len(p.prefix) == 0 && len(p.indent) == 0 { return } if depthDelta < 0 { p.depth-- if p.indentedIn { p.indentedIn = false return } p.indentedIn = false } if p.putNewline { p.WriteByte('\n') } else { p.putNewline = true } if len(p.prefix) > 0 { p.WriteString(p.prefix) } if len(p.indent) > 0 { for i := 0; i < p.depth; i++ { p.WriteString(p.indent) } } if depthDelta > 0 { p.depth++ p.indentedIn = true } } type parentStack struct { p *printer xmlns string parents []string } // setParents sets the stack of current parents to those found in finfo. // It only writes the start elements if vf holds a non-nil value. // If finfo is &noField, it pops all elements. func (s *parentStack) setParents(finfo *fieldInfo, vf reflect.Value) error { xmlns := s.p.defaultNS if finfo.xmlns != "" { xmlns = finfo.xmlns } commonParents := 0 if xmlns == s.xmlns { for ; commonParents < len(finfo.parents) && commonParents < len(s.parents); commonParents++ { if finfo.parents[commonParents] != s.parents[commonParents] { break } } } // Pop off any parents that aren't in common with the previous field. for i := len(s.parents) - 1; i >= commonParents; i-- { if err := s.p.writeEnd(Name{ Space: s.xmlns, Local: s.parents[i], }); err != nil { return err } } s.parents = finfo.parents s.xmlns = xmlns if commonParents >= len(s.parents) { // No new elements to push. return nil } if (vf.Kind() == reflect.Ptr || vf.Kind() == reflect.Interface) && vf.IsNil() { // The element is nil, so no need for the start elements. s.parents = s.parents[:commonParents] return nil } // Push any new parents required. for _, name := range s.parents[commonParents:] { start := &StartElement{ Name: Name{ Space: s.xmlns, Local: name, }, } // Set the default name space for parent elements // to match what we do with other elements. if s.xmlns != s.p.defaultNS { start.setDefaultNamespace() } if err := s.p.writeStart(start); err != nil { return err } } return nil } // A MarshalXMLError is returned when Marshal encounters a type // that cannot be converted into XML. type UnsupportedTypeError struct { Type reflect.Type } func (e *UnsupportedTypeError) Error() string { return "xml: unsupported type: " + e.Type.String() } func isEmptyValue(v reflect.Value) bool { switch v.Kind() { case reflect.Array, reflect.Map, reflect.Slice, reflect.String: return v.Len() == 0 case reflect.Bool: return !v.Bool() case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return v.Int() == 0 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return v.Uint() == 0 case reflect.Float32, reflect.Float64: return v.Float() == 0 case reflect.Interface, reflect.Ptr: return v.IsNil() } return false }