Package imaging provides basic image processing functions (resize, rotate, crop, brightness/contrast adjustments, etc.).
All the image processing functions provided by the package accept any image type that implements image.Image
interface as an input, and return a new image of *image.NRGBA
type (32bit RGBA colors, non-premultiplied alpha).
go get -u github.com/disintegration/imaging
http://godoc.org/github.com/disintegration/imaging
A few usage examples can be found below. See the documentation for the full list of supported functions.
// Resize srcImage to size = 128x128px using the Lanczos filter. dstImage128 := imaging.Resize(srcImage, 128, 128, imaging.Lanczos) // Resize srcImage to width = 800px preserving the aspect ratio. dstImage800 := imaging.Resize(srcImage, 800, 0, imaging.Lanczos) // Scale down srcImage to fit the 800x600px bounding box. dstImageFit := imaging.Fit(srcImage, 800, 600, imaging.Lanczos) // Resize and crop the srcImage to fill the 100x100px area. dstImageFill := imaging.Fill(srcImage, 100, 100, imaging.Center, imaging.Lanczos)
Imaging supports image resizing using various resampling filters. The most notable ones:
Lanczos
- A high-quality resampling filter for photographic images yielding sharp results.CatmullRom
- A sharp cubic filter that is faster than Lanczos filter while providing similar results.MitchellNetravali
- A cubic filter that produces smoother results with less ringing artifacts than CatmullRom.Linear
- Bilinear resampling filter, produces smooth output. Faster than cubic filters.Box
- Simple and fast averaging filter appropriate for downscaling. When upscaling it's similar to NearestNeighbor.NearestNeighbor
- Fastest resampling filter, no antialiasing.The full list of supported filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali, CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine. Custom filters can be created using ResampleFilter struct.
Resampling filters comparison
Original image:
The same image resized from 600x400px to 150x100px using different resampling filters. From faster (lower quality) to slower (higher quality):
Filter | Resize result |
---|---|
imaging.NearestNeighbor |
|
imaging.Linear |
|
imaging.CatmullRom |
|
imaging.Lanczos |
dstImage := imaging.Blur(srcImage, 0.5)
Sigma parameter allows to control the strength of the blurring effect.
Original image | Sigma = 0.5 | Sigma = 1.5 |
---|---|---|
dstImage := imaging.Sharpen(srcImage, 0.5)
Sharpen
uses gaussian function internally. Sigma parameter allows to control the strength of the sharpening effect.
Original image | Sigma = 0.5 | Sigma = 1.5 |
---|---|---|
dstImage := imaging.AdjustGamma(srcImage, 0.75)
Original image | Gamma = 0.75 | Gamma = 1.25 |
---|---|---|
dstImage := imaging.AdjustContrast(srcImage, 20)
Original image | Contrast = 15 | Contrast = -15 |
---|---|---|
dstImage := imaging.AdjustBrightness(srcImage, 20)
Original image | Brightness = 10 | Brightness = -10 |
---|---|---|
dstImage := imaging.AdjustSaturation(srcImage, 20)
Original image | Saturation = 30 | Saturation = -30 |
---|---|---|
package main import ( "image" "image/color" "log" "github.com/disintegration/imaging" ) func main() { // Open a test image. src, err := imaging.Open("testdata/flowers.png") if err != nil { log.Fatalf("failed to open image: %v", err) } // Crop the original image to 300x300px size using the center anchor. src = imaging.CropAnchor(src, 300, 300, imaging.Center) // Resize the cropped image to width = 200px preserving the aspect ratio. src = imaging.Resize(src, 200, 0, imaging.Lanczos) // Create a blurred version of the image. img1 := imaging.Blur(src, 5) // Create a grayscale version of the image with higher contrast and sharpness. img2 := imaging.Grayscale(src) img2 = imaging.AdjustContrast(img2, 20) img2 = imaging.Sharpen(img2, 2) // Create an inverted version of the image. img3 := imaging.Invert(src) // Create an embossed version of the image using a convolution filter. img4 := imaging.Convolve3x3( src, [9]float64{ -1, -1, 0, -1, 1, 1, 0, 1, 1, }, nil, ) // Create a new image and paste the four produced images into it. dst := imaging.New(400, 400, color.NRGBA{0, 0, 0, 0}) dst = imaging.Paste(dst, img1, image.Pt(0, 0)) dst = imaging.Paste(dst, img2, image.Pt(0, 200)) dst = imaging.Paste(dst, img3, image.Pt(200, 0)) dst = imaging.Paste(dst, img4, image.Pt(200, 200)) // Save the resulting image as JPEG. err = imaging.Save(dst, "testdata/out_example.jpg") if err != nil { log.Fatalf("failed to save image: %v", err) } }
Output: